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ABSTRACT

Objective: To design, develop, and evaluate a scalable clinical data normalization pipeline for standardizing un-

structured electronic health record (EHR) data leveraging the HL7 Fast Healthcare Interoperability Resources

(FHIR) specification.

Methods: We established an FHIR-based clinical data normalization pipeline known as NLP2FHIR that mainly

comprises: (1) a module for a core natural language processing (NLP) engine with an FHIR-based type system;

(2) a module for integrating structured data; and (3) a module for content normalization. We evaluated the FHIR

modeling capability focusing on core clinical resources such as Condition, Procedure, MedicationStatement (in-

cluding Medication), and FamilyMemberHistory using Mayo Clinic’s unstructured EHR data. We constructed a

gold standard reusing annotation corpora from previous NLP projects.

Results: A total of 30 mapping rules, 62 normalization rules, and 11 NLP-specific FHIR extensions were created

and implemented in the NLP2FHIR pipeline. The elements that need to integrate structured data from each clini-

cal resource were identified. The performance of unstructured data modeling achieved F scores ranging from

0.69 to 0.99 for various FHIR element representations (0.69–0.99 for Condition; 0.75–0.84 for Procedure; 0.71–

0.99 for MedicationStatement; and 0.75–0.95 for FamilyMemberHistory).

Conclusion: We demonstrated that the NLP2FHIR pipeline is feasible for modeling unstructured EHR data and

integrating structured elements into the model. The outcomes of this work provide standards-based tools of

clinical data normalization that is indispensable for enabling portable EHR-driven phenotyping and large-scale

data analytics, as well as useful insights for future developments of the FHIR specifications with regard to han-

dling unstructured clinical data.
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INTRODUCTION

With the widespread adoption of electronic health records (EHRs) in

healthcare organizations, there is ample opportunity for secondary use

of EHR data in clinical and translational research. However, the lack of

EHR data interoperability between institutions makes it challenging to

integrate and share healthcare and clinical research data, thus impeding

effective and efficient collaboration. A standardized model for data rep-

resentation would assist in promoting the exchange of EHR data,

achieving large-scale data-driven research collaborations and supporting

rapid generation of accurate and computable phenotypes.
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As the next generation standards framework, the Fast Healthcare

Interoperability Resources (FHIR)1 was developed by HL7 to meet

clinical interoperability needs. FHIR defines a collection of

“resources” that “can easily be assembled into working systems that

solve real-world clinical and administrative problems at a fraction

of the price of existing alternatives.” This assembly process typically

requires “profiling”—the adaptation of the FHIR core resources for

use in particular contexts and use cases. FHIR also leverages the lat-

est web standards and places a strong focus on implementability.

Notably, major EHR vendors (eg, Epic, Cerner) and healthcare pro-

viders (eg, Mayo Clinic, Intermountain Healthcare, and Partners

Healthcare) have been involved in the development and adoption of

FHIR through HL7 Argonaut Project.2 In the clinical research do-

main, the FHIR-based standard Application Programming Interfaces

(APIs) have been leveraged in a national collaboration known as the

Sync for Science (S4S) initiative3 to help patient share EHR data

with researchers and empower individuals to participate in health

research.

While FHIR is rapidly being adopted in different EHR systems at

various institutions, there are a number of gaps on how to represent

unstructured information in clinical narratives using FHIR. First,

there are unmet needs on standardizing unstructured clinical data.

The recent proposal from the Office of the National Coordinator

for Health Information Technology (ONC) and the Centers for

Medicare & Medicaid Services (CMS) that FHIR APIs be required

for certified EHR systems4 highlighted the importance of the FHIR

standard. Particularly, using NLP to gain access to the narrative con-

tent in EHRs via FHIR will be of great value to data analytics, qual-

ity improvement, and advanced decision support. However, current

HL7 Argonaut project has not yet provided a solution to standardize

unstructured data. Second, although it is certainly feasible to use the

FHIR Composition5 as a document resource for representing clinical

narratives in EHRs, few studies have been done on (1) the tool de-

velopment for generating the FHIR resource instances from clinical

narratives leveraging the NLP technology; and (2) assessing the dis-

crepancies between FHIR data models and NLP type systems. The

DeepPhe project6 created a conceptual model (DeepPhe Ontology)

leveraging FHIR models to provide a terminology of entities and

relationships between them to represent cancer phenotypes

extracted from unstructured EHR data.7 The DeepPhe project was

focused more on adapting FHIR data models to represent cancer

phenotypes, rather than developing a data normalization pipeline to

formally model unstructured data and NLP outputs using FHIR

specification. In addition, no work has been done to assess whether

FHIR can represent core elements (eg, negation, certainty, etc.) from

different clinical NLP systems for handling unstructured clinical

data. Third, a common type system for clinical NLP has been

regarded as an important way to enable interoperability between

structured and unstructured data generated in different clinical set-

tings.8 As a part of SHARPn data normalization pipeline, cTAKES9

implemented a common type system that has an end target of deep

semantics based on the clinical element models (CEMs).10 In the

context of secondary use of EHR data, we envision that an FHIR

standard-based common type system would better improve semantic

interoperability between heterogeneous clinical data sources, given

the rapid adoption of FHIR as an international standard in different

EHR systems. This novel FHIR-based type system not only can en-

able effective exchange, integration, sharing, and reuse of encoded

and structured clinical narratives, along with well-structured EHR

data, but it can also serve as target data models for advanced devel-

opment of NLP system. The latter includes the following two inno-

vative aspects: (1) a well-defined target data model based on the

FHIR type system allows us to easily integrate multiple distinct NLP

pipelines, each of which may have their own specialties; and (2)

FHIR provides a powerful modeling mechanism that enables the cre-

ation of new standard models for particular NLP-based information

retrieval tasks, for example, cancer-specific phenotype extraction.

The objective of this study was to design, develop, and evaluate

a scalable and standards-based EHR data modeling framework and

accompanying clinical data normalization pipeline leveraging the

HL7 FHIR specification. We implemented a generic pipeline known

as NLP2FHIR for modeling unstructured EHR data using the FHIR

specification and evaluated the main outcomes as well as the perfor-

mance of our pipeline using the EHR data from the Mayo Clinic.

MATERIALS AND METHODS

Materials
Clinical narrative corpora

To support the experiment and evaluation of the NLP2FHIR pipe-

line, a FHIR-based clinical data normalization pipeline, we reused a

corpus of 734 clinical notes from Mayo Clinic’s previous clinical

NLP research projects, including SHARPn, the Mayo MedXN proj-

ect, and the Mayo Clinic’s family member history (FMH) NLP proj-

ect.11–13 These notes were randomly collected from Mayo Clinic’s

EHR. Four section types (ie, problem list, family history, medication

list, and past procedure list) with 940 individual sections were used

for the unstructured data modeling study in this study. These cor-

pora had previously been annotated by clinical subject matter

experts for research purposes.

UIMA-based clinical NLP tools

UIMA, short for Unstructured Information Management Architec-

ture, is a data-driven architecture where individual components are

able to communicate with one another through a data structure called

the common analysis system (CAS), which uses a specified hierarchi-

cal type system. The type system allows for flexible passing of input

and output data types between components of an NLP system. In this

study, the NLP2FHIR pipeline implementation integrated three

UIMA-based clinical NLP tools as follows: (1) cTAKES,9 an open-

source NLP system for extraction of information from EHR clinical

free-text, which provides a tool for selecting different descriptors to

support common clinical NLP tasks (eg, part-of-speech tagging,

chunking, and dictionary lookup); (2) MedXN,12 an open-source

medication entity/attribute extraction and normalization tool, which

extracts comprehensive medication information and normalize it to

the most appropriate RxNorm concept unique identifier (RxCUI) as

specifically as possible; and (3) MedTime,14 an open-source temporal

information detection system, which extracts EVENT/TIMEX3 and

temporal link (TLINK) identification from clinical text.

FHIR specification and application programming interface

The building block in FHIR is a Resource,1 which provides a com-

mon way to define and represent all exchangeable content and re-

lated metadata in a particular modeling domain. In this study, we

leveraged both document resources Composition/Bundle and clinical

resources Condition, Procedure, MedicationStatement/Medication,

and FamilyMemberHistory to model unstructured EHR data and

NLP outputs. As of September 10, 2019, the version FHIR R4 has

been released officially while we used an earlier version, the
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Standards for Trial Use Version 3 (STU3) (released on April 19,

2017) in this study.

As the FHIR modeling interface, HAPI FHIR was used in our im-

plementation to support FHIR data modeling. HAPI FHIR is an

open-source implementation of the FHIR specification in Java.15

HAPI FHIR defines model classes for every resource type and data

type defined by FHIR specification. In addition, HAPI supports data

validation within FHIR modeling. Therefore, we used the HAPI

FHIR application programming interface to serialize elements

extracted from clinical documents into standard FHIR eXtensible

Markup Language (XML) and JavaScript Object Notation (JSON)

representations.

Methods
Figure 1 shows the system architecture of the FHIR-based clinical

data normalization pipeline. The NLP2FHIR pipeline comprises the

following three modules: (1) a module for a core NLP engine with

an FHIR-based type system, (2) a module for integrating structured

data, and (3) a module for content normalization. In addition, an in-

tuitive graphical user interface is implemented to allow users to con-

figure the pipeline with parameters in terms of unified medical

language system (UMLS) username and password, input directory

and type (eg, TEXT, or COMPOSITION_RESOURCE), section def-

inition directory and file, resources to produce, and output directory

and formats (eg, FHIR JSON). Figure 2 shows a screenshot of the

graphic user interface of the implemented NLP2FHIR pipeline.

Module for a core NLP engine

Unstructured clinical documents (eg, clinical notes, radiology

reports) usually convey large amounts of valuable information. The

module for modeling unstructured data contains the following com-

ponents:

1. Rendering clinical documents in FHIR Composition resource as

input: As a type of FHIR document resource, the Composition

resource5 defines a set of elements that are assembled together

Figure 1. NLP2FHIR pipeline for EHR data modeling. EHR: electronic health record; FHIR: Fast Healthcare Interoperability Resources.

Figure 2. A screenshot of the graphic user interface of the implemented

NLP2FHIR pipeline. Input type can be COMPOSITION_RESOURCE, BUND-

LE_RESOURCE, XMI, or TEXT.
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into a single logical document and provides a coherent statement

for meaningful document representation. Therefore, we used the

FHIR Composition resource to standardize variants of clinical

documents as standard input of the FHIR NLP engine. A collec-

tion of standard Logical Observation Identifiers and Codes

(LOINC) codes were assigned for encoding sections, including

Reported Problem List (11450-4), History of Present Illness Nar-

rative (10164-2), History of Medication Use Narrative (10160-

0), History of Procedures Document (47519-4), and History of

Family Member Diseases Narrative (10157-6). After analyzing

section content and FHIR resource definition, we created map-

pings from the sections to FHIR resources.

2. Integrating existing clinical NLP tools as the NLP engine of the

NLP2FHIR pipeline: We integrated the existing clinical NLP

tools, comprising cTAKES, MedXN, and MedTime to extract

clinical entities from corresponding document sections, and stan-

dardized them using the FHIR resources Condition, Procedure,

MedicationStatement (including Medication), and FamilyMem-

berHistory. Different tools were used to handle different clinical

narrative extraction tasks. The cTAKES and MedTime were

used for the FHIR element entity and relation extraction tasks

from the problem list (corresponding to FHIR Condition), past

history of surgery (corresponding to FHIR Procedure), and

FMH (corresponding to FHIR FamilyMemberHistory). For

medication list (corresponding to the FHIR MedicationState-

ment and Medication), MedXN and MedTime were set up for

extracting and standardizing drug names and drug related tem-

poral expressions.

3. Creating a FHIR-based type system to interoperate with UIMA-

based NLP tools: UIMA provides a software framework for

building type systems while supporting interaction between mul-

tiple NLP components. To allow for rapid integration of the

NLP tooling output or particular FHIR element extraction

results, we generated an FHIR-based type system using the

FHIR Standards for Trial Use (STU) 3 v1.8.0 specification. The

FHIR-based type system is used to meet the need of interopera-

bility between different NLP pipelines, which enhances the NLP

component interoperability through maintaining consistent

naming of elements, structure hierarchy, and data restrictions

present within the FHIR definitions.16

4. Defining mapping rules: We compared the NLP output types

with FHIR specification, and reassembled extraction outputs of

the NLP tools by creating mapping rules between heterogeneous

NLP outputs and standard FHIR elements. FHIR resource and

element mapping levels were conducted in terms of granularity

at two different levels: (1) narrative sections to FHIR resources

and (2) NLP output types to FHIR elements. In total, 30 differ-

ent types and levels of mapping rules were generated to support

integrating heterogeneous NLP outputs to our NLP2FHIR pipe-

lines, and 59 target FHIR elements could be directly populated

from NLP tools. Table 1 shows examples of the mapping rules.

Additional details are provided in Supplemental Material S2.

5. Creating NLP-specific FHIR extensions: We noticed that the

current FHIR resource definition did not cover all the elements

from NLP outputs, and some NLP-specific elements of these out-

puts were essential within the context of subsequent down-

stream analytics. Therefore, we created a list of FHIR extensions

to keep these NLP-specific elements by analyzing a set of clinical

NLP elements defined in the latest OHDSI CDM v6.0,17

cTAKES-type system definitions, and input from NLP experts.

Table 2 shows a group of 11 common NLP-specific FHIR

extensions created for supporting extended unstructured EHR

data normalization. The extension elements were aligned for se-

mantic overlap or similarity by the NLP expert-based reviews.

The NLP-specific elements defined in the FHIR extensions were

reviewed using the following two basic criteria: (1) whether the

element was commonly identified in clinical narratives; and (2)

whether the existing NLP tools could handle the entity/relation

element extraction.

Module for integrating structured data

Although the entity mentions that were extracted from clinical nar-

ratives using NLP tools covered the majority of the elements as de-

fined in the FHIR Composition resource and its referenced clinical

resources, there are still, however, several pieces of information that

needed to be captured from structured EHR data and integrated

with the NLP output to complete the population of the correspond-

ing FHIR resource content. The crucial steps for integrating struc-

tured data with NLP output consisted of: (1) setting templates for

mapping the structured source data elements to the corresponding

FHIR resource elements; (2) extracting the instance data from the

EHR, where normalization processing may have applied; (3) linking

structured instance data with NLP output through a primary key

reference (eg, patient id) or directly as an attribute defined within an

FHIR resource. For example, when populating each instance of the

FHIR MedicationStatement resource, we could directly get its sub-

ject information (ie, who is/was taking the medication) from struc-

tured EHR data and link each subject to the specific

MedicationStatement instance through the Reference (Patient-

Group) identifier. Table 3 lists the information that was captured

from structured EHR data and integrated with each component of

the NLP2FHIR pipeline.

Module for content normalization

Content normalization makes the resource content conform to the

FHIR specification in terms of its datatype definitions for corre-

sponding model elements and its content semantics through termi-

nology binding. As mentioned previously, we leveraged a number of

core FHIR resources Condition, Procedure, MedicationStatement,

and FamilyMemberHistory to capture clinical concepts identified

from the unstructured narratives. Therefore, we followed the recom-

mendation from the definitions of these core resources on the use of

preferred code systems. In addition, many FHIR elements have spe-

cific datatype requirements, (eg, boolean, integer, string, and deci-

mal), thus, we implemented the datatype conversion and value

transformation to their target element definition. Handling termi-

nology binding is one of the concept normalization tasks, which

requires binding an FHIR element with the identity and version of a

terminology system, the codes, and their display names, as shown in

Supplementary Table 2.

In addition to standard codes defined in external terminologies,

FHIR also defines its own value sets with a list of codes in its specifi-

cation. We created a set of transformation rules to normalize the ele-

ment instances in terms of terminology binding. For example, tab is

an instance for the element Medication.form, which is normalized

to Tablet (385055001) defined in the SNOMED CT Form Codes. A

number of NLP tools support the concept normalization for the

identified entities. For instance, MedXN normalizes a variety of

nonstandard medication mentions to the RxNorm codes, and

cTAKES assigns UMLS concept unique identifiers to the extracted

entities. However, the code systems recommended by FHIR may not
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Table 1. Examples of mapping rules between EHR sources, NLP output types, and FHIR elements

Source NLP output types FHIR elements

Mapping

types Examples

Medication

list

MedXN: Drug MedicationStatement.medicationCodable-

Concept

1:1 Oxamniquine![SNOMED: 747006]

MedXN:

Drug: attributes: type-

”frequency”

MedTime:

MedTimex3: type¼”SET”

MedicationStatement.dosage.timing.fre-

quency

MedicationStatement.dosage.timing.fre-

quencyMax

MedicationStatement.dosage.timing.period

MedicationStatement.dosage.timing.period-

Max

MedicationStatement.dosage.timing.perio-

dUnit

MedicationStatement.dosage.asNeeded.as-

NeededBoolean

MedicationStatement.dosage.timing.dayof-

Week

MedicationStatement.dosage.timing.when

1:n Once daily

!1[frequency], 1[period], d[periodUnit]

4–6 times

!4[frequency], 6[frequencyMax]

As needed for heel pain!true

Regular: once daily

every six hours

Irregular: as needed for pain

every Monday, Tuesday Wednesday

MedXN: Drug: attributes:

type¼”duration”

MedTime:

MedTimex3: type-

”DURATION”

Dosage.duration

Dosage.durationMax

Dosage.durationUnit

1:n 3 days

!3[duration], d[durationUnit]

MedXN: Drug: attributes:

type¼”route”

Dosage.route 1:1 By mouth [oral route]

MedXN: Drug: attributes:

type¼”strength”

Medication.ingredient.amount. numerator.-

quantity.value

Medication.ingredient.amount. numerator.-

quantity.unit

Medication.ingredient.amount. denumera-

tor.quantity.value

Medication.ingredient.amount. denumera-

tor.quantity.unit

1:n Regular: 500 mg /5 mL!
500[numerator.quantity.value], mg[nu-

merator.quantity.unit], 5[denumera-

tor.quantity.value], mL

[denumerator.quantity.unit]

Irregular: 200 mg! Default assign:

1[denumerator.quantity.value]

MedXN: Drug: attributes:

type¼”form”

Medication.form 1:1 tab[Tablet]

MedXN: Drug: attributes:

type¼”dosage”

Dosage.doseQuantity.value

Dosage.doseQuantity.unit

Dosage.doseQuantity.Range.low.value

Dosage.doseQuantity.Range.low.unit

Dosage.doseQuantity.Range.high.value

Dosage.doseQuantity.Range.high.unit

1:n 10 mL!10[value], mL[unit]

2–3 tabs!2[range.low.value], tab[ran-

ge.low.unit], 3[range.high.value], tab[-

range.high.unit]

Problem list cTAKES: Disease_disorder Condition.code 1:1 The Lingering sore throat!
[SNOMED: 140004] /Chronic phar-

yngitis

cTAKES: Anatomical_Site

relations: type¼“LocationOf”

Condition.bodySite 1:1 Back of the head

! [SNOMED: 774007] / Head and neck

cTAKES: modifier: type-

“Severity”

Condition.severity 1:1 Very bad! [SNOMED: 24484000] /

Severe

Family

history

Relation

relations: type:”SideOfFamily”

relations: type:”Blood”

relations: type:”Adopted”

FamilyMemberHistory.relationship n:1 Grandpa!MGRFTH / maternal grand-

father

Laboratory

test

test_code Observation.code 1:1 Albumin in Semen![LOINC: 10558-5] /

Albumin [Moles/volume] in Semen

Section Source Section Composition.section.code 1:1 Family history!
[LOINC: 10157-6] / History of family

member diseases narrative

(continued)
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be the same as those used in existing NLP tools. For example, FHIR

suggests the use of SNOMED CT codes for the element

“MedicationStatement.medicationCodeableConcept,” but we ac-

quired its corresponding RxNorm codes from MedXN. For this situ-

ation, terminology mapping is necessary. Therefore, we used

manually created transformation rules and leveraged existing termi-

nology mappings as the main methods for content normalization.

Although varieties of individual resources are produced by the stan-

dard outputs of our normalization pipeline, these resources are actu-

ally directly or indirectly relevant to each other.

According to the FHIR specification, we normalized various

expressions from source EHR data using a group of normalization

rules. A total of 62 normalization rules were created and imple-

mented (Table 4). Other value set and data type conformations for

each FHIR element are included in Supplementary Material S2.

In the FHIR specification, the Bundle resource18 refers to a con-

tainer for a collection of resources, which is typically used to gather

a collection of resources into a single Bundle instance with a specific

context. In this study, the FHIR Bundle resource is used to contain

both the instances of the FHIR Composition resource and its refer-

enced clinical resources. We developed a wrapping process as a part

of the NLP2FHIR pipeline for connecting individual resources into

an exchangeable Bundle resource that preserves complete semantics

to support secondary use of the standardized instance data. An ex-

ample of the FHIR Bundle recourse is shown in Figure 3.

Evaluation design

The main purpose of the performance evaluation is to demonstrate

whether the standardization process causes a loss in performance, as

there are often concerns that standardization is culpable for the loss

in performance due to data elements that are originally output by

NLP being not representable in a standard (eg, word-sense disam-

biguation, bag-of-word ngrams, cooccurrences, etc.). The perfor-

mance evaluation was conducted through the following steps.

1. Reusing annotation corpora: We reused the corpora from

SHARPn, MedXN, and FMH projects from Mayo’s unstruc-

tured EHR data. These corpora contain annotations made by

medical experts, the quality of which has been sufficiently veri-

fied through previous studies.

2. Standardizing the annotation corpora using FHIR-based annota-

tion schema: To support corpora reuse and integration, we

Table 1. continued

Source NLP output types FHIR elements

Mapping

types Examples

Temporal

information

MedTime: MedTimex3: type-

”DATE”

MedicationStatement.effectiveDatetime 1:1 April 16th

MedTime: MedTimex3: type-

”TIME”

MedicationStatement.effectiveDatetimeDo-

sage.timeofDay

1:n April 8, 2008 at 04: 38 PM

Table 2. Proposed FHIR NLP extensions for clinical NLP

Proposed

FHIR NLP extension FHIR resource Definition reference sourcesa Description

offset Any [Ref: cTAKES/ LineAndTokenPosition]

[Ref: OHDSI NLP/offset]

Token line and offset of the extracted term in the

input note

raw_text Any [Ref: OHDSI NLP/ lexical_variant] Raw text extracted from the NLP tool

context Any [Ref: cTAKES /LookupWindowAnnotation]

[Ref: cTAKES /ContextAnnotation]

[Ref: OHDSI NLP/snippet]

Contextual information of an entity

nlp_system Any [Ref: OHDSI NLP/nlp_system] Name and version of the NLP system that extracted

the term. Useful for data provenance

nlp_date/nlp_datetime Any [Ref: OHDSI NLP/nlp_date, nlp_datetime] The date or datetime of the note processing. Useful

for data provenance

term_temporal Any [Ref: cTAKES/HistoryOfModifier]

[Ref: OHDSI NLP/term_temporal]

The time modifier associated with the extracted

term

confidence_score Any NLP experts inputs The confidence score indicates the probability of

accuracy with the extracted term

conditional_modifier Any [Ref: cTAKES/ConditionalModifier] Used to indicate that a procedure or assertion occurs

under certain conditions

negated_modifier Condition

Procedure

Medication

[Ref: cTAKES/ PolarityModifier] Used to indicate that a procedure or assertion did

not occur or does not exist

certainty_modifier Condition [Ref: cTAKES/ UncertaintyModifier] An introduction of a measure of doubt into a

statement

LabDeltaFlag_modifier Observation [Ref: cTAKES/ ssLabDeltaFlagModifier] An indicator to warn that the laboratory test result

has changed significantly from the previous iden-

tical laboratory test result

Abbreviations: FHIR: Fast Healthcare Interoperability Resources; NLP: natural language processing.
aFor expansions of abbreviations used in definition reference sources, please refer to text.
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designed and developed a framework,19 which contains the fol-

lowing two components: (1) an automatic schema transforma-

tion component, in which the annotation schema in each corpus

is automatically transformed into the FHIR-based schema; and

(2) an expert-based verification and annotation component, in

which existing annotations can be verified and new annotations

can be added for new elements defined in FHIR. Three

co-authors (NH, AW, and GJ) reviewed and verified the

Table 3. Structured data integrated from EHRs for the NLP2FHIR pipeline

NLP2FHIR pipeline

Elements populated

from structured data Data type Definitions

Condition Condition.clinicalStatus CodeableConcept active j recurrence j relapse j inactive j remission j resol-

ved(HL7 ValueSet: ConditionClinicalStatusCodes)

Condition.category CodeableConcept problem-list-item j encounter-diagnosis(HL7 ValueSet:

ConditionCategoryCodes)

Condition.subject Reference Who has the condition

Condition.encounter Reference The encounter during which this condition was created

or diagnosed

Conditon.recordedDate dateTime Date record was first recorded

Procedure Procedure.status code A code specifying the state of the procedure. Generally,

this will be the in-progress or completed state

Procedure.subject Reference The person, animal or group on which the procedure

was performed

Procedure.category CodeableConcept Classification of the procedure

Procedure.encounter Reference The Encounter during which this Procedure was created

or performed or to which the creation of the record is

tightly associated

MedicationStatement MedicationStatement.status code active j completed j entered-in-error j intended j stopped

j on-hold j unknown j not-taken

MedicationStatement.subject Reference Who is/was taking the medication

MedicationStatement.category CodeableConcept Type of medication usage(SNOMED CT)

MedicationStatement.dateAsserted dateTime When the statement was asserted

FMH FamilyMemberHistory.status code partial j completed j entered-in-error j health-

unknown(HL7 ValueSet: FamilyHistoryStatus)

FamilyMemberHistory.dataAbsentReason CodeableConcept subject-unknown j withheld j unable-to-obtain j
deferred (HL7 ValueSet: FamilyHistoryAbsentReason)

FamilyMemberHistory.patient Reference Patient history is about

FamilyMemberHistory.date dateTime When history was recorded or last updated

Abbreviations: EHR: electronic health record; FHIR: Fast Healthcare Interoperability Resources; HL7: Health Level Seven International; NLP: natural lan-

guage processing.

Table 4. Normalization results for each NLP2FHIR pipeline

NLP2FHIR pipeline No. of rules Element examples Data type Normalization examples

MedicationStatement 25 MedicationStatement.medicationCodable-

Concept

CodeableConcept Oxamniquine!747006[coding.code]

MedicationStatement.dosage.timing.fre-

quency

integer Once daily!1[frequency]

MedicationStatement.dosage.asNeeded.as-

NeededBoolean

boolean As needed for heel pain!true

MedicationStatement.dosage.timing.dayof-

Week

code Every Monday! mon[http://hl7.org/

fhir/ValueSet/days-of-week]

Procedure 10 Procedure.code CodeableConcept Kidney echography! 306005/echogra-

phy of kidney

Procedure.reasonCode CodeableConcept 134006/decreased hair growth

Procedure.performed[x].performedDate-

Time

dateTime April 16th, 2010

Condition 13 Condition.code CodeableConcept The Lingering sore throat! 140004/

Chronic pharyngitis

Condition.bodySite CodeableConcept 774007/Head and neck

Condition.abatementString string Resolved

FMH 14 FamilyMemberHistory.condition.code CodeableConcept 3511005/Infectious thyroiditis

FamilyMemberHistory.relationship CodeableConcept MGRFTH/maternal grandfather

Abbreviations: FHIR: Fast Healthcare Interoperability Resources; MGRFTH: a role code for maternal grandfather; NLP: natural language processing.
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annotations. NH and AW have extensive experience in medical

informatics, FHIR-based research applications, and clinical

NLPs; and GJ has medical background with extensive expertise

in medical informatics and standards-based research applica-

tions. The generated FHIR-represented corpora were used as the

gold standard to facilitate the FHIR NLP engine performance

tuning and evaluation.

3. Evaluating the performance of the NLP2FHIR pipeline: We

used standard measures (precision, recall, and F score) using the

FHIR-based annotation corpora as the gold standard. Based on

the NLP output mapping and machine learning methods integra-

tion, we evaluated the core element extraction and normaliza-

tion performance of the FHIR resources Condition, Procedure,

MedicationStatement, and FamilyMemberHistory. As the FHIR

model contained more granular clinical elements than those out-

put types from existing NLP tools, our FHIR NLP engine also

supported the particular FHIR element extraction algorithms

leveraging machine learning methods; three annotation corpora

were used for different FHIR element machine learning tasks.

RESULTS

We measured the performance of our pipeline that achieved F-scores

ranging from 0.690 to 0.995 for various FHIR element representa-

tions, which is comparable to the general clinical NLP tasks.9,12,14

The performance results of core elements and original baseline tools

are shown in Table 5.

The results demonstrated that the NLP2FHIR pipeline does not

cause a decrease in performance through our integration framework,

which was established to enhance EHR interoperability compared

with diverse existing tools. The element FamilyMemberHistory.ex-

tension. negated_modifier is one of the FHIR NLP-specific exten-

sions, and its performance results were based on the cTAKES

outputs; the element FamilyMemberHistory.relationship was newly

identified using the machine learning-based relation extraction algo-

rithm, and other element evaluation was based on mappings and

normalization rules for existing NLP tools. Therefore, the results

verified the feasibility of the NLP2FHIR pipeline on standardizing

unstructured EHR data.

DISCUSSION

The use of standards in modeling EHR data has the potential to un-

lock clinical data interoperation, high-throughput computation, and

meaningful use.20 To promote FHIR-oriented EHR data modeling,

we designed and developed a FHIR-based clinical data normaliza-

tion pipeline (ie, NLP2FHIR) that can extract, standardize, inte-

grated data from unstructured clinical narratives. We believe that

modeling unstructured EHR data using the NLP2FHIR pipeline can

play an important role in enabling advanced semantic interoperabil-

ity across different EHR systems.

Figure 3. Example of the FHIR bundle resource with a standard section of “Problem List—Reported (LOINC: 11450-4)” and its referenced FHIR resources. FHIR:

Fast Healthcare Interoperability Resources; LOINC: Logical Observation Identifiers and Codes.
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The key contributions of our study are: (1) the creation of map-

ping rules to support automatic FHIR instances population from the

heterogeneous clinical database or NLP output types from multiple

NLP tools; (2) the creation of normalization rules to support non-

standard data content transforming into standard FHIR representa-

tion; (3) the definition of a collection of NLP-specific FHIR

extensions to enhance the FHIR model supportability for unstruc-

tured data; and (4) the construction of the FHIR-based type system

used for improving interoperability among existing NLP tools and

components. The design architecture supports extensibility and scal-

ability as the FHIR-based type system covers all core clinical resour-

ces in the FHIR specification, which makes the NLP2FHIR pipeline

modular. For instance, we can easily extend the architecture to pro-

duce a new data normalization pipeline profile using the FHIR Diag-

nosticReport resource to support the modeling of unstructured

diagnostic reports (eg, pathology or radiology reports) in the future.

The NLP2FHIR pipeline provides a generic and scalable frame-

work to support the FHIR modeling of unstructured EHR data. We

have focused on the use of the core clinical resources Condition, Pro-

cedure, MedicationStatement (including Medication), and Family-

MemberHistory. We needed to handle those FHIR elements that

were not covered by the NLP outputs through investigating: (1)

whether the values of the elements could be retrieved using struc-

tured data (Table 3); and (2) whether new relationship detection

algorithms should be developed for a specific element (eg, Family-

MemberHistory.relationship). We solicited a collection of such ele-

ments and developed corresponding FHIR extensions (Table 2)

within the NLP2FHIR pipeline. We argue that community-based

consensus development is a critical next step to broaden the applica-

bility of the NLP2FHIR pipeline in the clinical informatics research

community.

Meanwhile, we identified several barriers to EHR data modeling

using FHIR. First, we noticed that while some of the NLP output

types could be directly mapped to FHIR elements without semantic

differences, in most other cases, there were semantic gaps between

data models in the existing NLP systems and the FHIR specification.

Second, the content normalization work in FHIR remains a

challenging task as it depends to a large extent on both the external

terminology services and the FHIR internal value sets. Many of the

elements in an FHIR resource are associated with a list of coded val-

ues (ie, a value set); some are in the form of a set of fixed values de-

fined in the FHIR specification, while others are in the form of a list

of concept codes defined in external terminologies or ontologies (eg,

LOINC,21 RxNorm,22 or SNOMED CT23) If needed, a locally

maintained dictionary and/or look-up table can even be used as a

part of an FHIR profile. Currently, the FHIR code system and value

set lists are under construction,24 and integrating FHIR terminology

services into our pipeline is critical for the future work. Fortunately,

a number of community efforts have been initiated in developing

open FHIR terminology services, including HAPI FHIR Terminol-

ogy Loader for SNOMED CT and LOINC,25 LOINC FHIR Termi-

nology Server,26 and Health Open Terminology FHIR Server.27

Third, the mapping and content normalization rules are executed as

part of transformation script within our NLP2FHIR pipelines. For

future work, we plan to adopt formal models like the FHIR Struc-

tureMap resource to represent those structure mapping rules and the

ConceptMap resource to represent the content normalization rules.

This would enable an automated conversion process to be standard-

ized by the FHIR specification.

CONCLUSION

In this study, we developed and evaluated a standards-based clinical

data normalization pipeline to model EHR data using the FHIR

specification. We demonstrated that our NLP2FHIR pipeline is fea-

sible for standardizing unstructured EHR data and integrating struc-

tured data into the model. The outcomes of this work provide

standards-based tools of clinical data normalization that is indis-

pensable for enabling portable EHR-driven phenotyping and large-

scale data-driven analytics, as well as useful insights for future devel-

opment of the FHIR specification on the handling of unstructured

clinical data. With the standards-based FHIR modeling of both

structured and unstructured EHR data, the NLP2FHIR pipeline

would greatly benefit electronic health care data exchange,

Table 5. Evaluation results on the performance of the NLP2FHIR pipeline

FHIR resource FHIR element Precision Recall F score BaselineF Score

MedicationStatement

and Medication

MedicationStatement.medicationCodeableConcept 0.996 0.982 0.988 MedXN: 0.581–0.954

MedTime:

0.880

Dosage.timing.repeat.frequency 0.795 0.873 0.832

Dosage.timing.repeat.period 0.959 0.914 0.936

Dosage.timing.repeat.duration 0.600 1 0.750

Dosage.route 0.957 0.816 0.878

Medication.ingredient.amount.numerator.quantity.value 0.930 0.815 0.869

Medication.ingredient.amount.numerator.quantity.unit 0.926 0.899 0.911

Medication.form 0.871 0.704 0.779

Dosage.timing.repeat.when 1 0.571 0.727

Dosage.asNeededBoolean 0.913 0.583 0.712

Condition Condition.code 0.865 0.696 0.771 cTAKES:

0.768–0.954Condition.bodySite 0.871 0.611 0.718

Condition.severity 0.909 0.556 0.690

Condition.extension.negated_modifier 0.992 0.998 0.995

Procedure Procedure.code 0.889 0.643 0.746 cTAKES:

0.768–0.954Procedure.bodySite 0.895 0.798 0.844

FamilyMemberHistory FamilyMemberHistory.condition.code 0.940 0.716 0.813 cTAKES:

0.768–0.954FamilyMemberHistory.extension.negated_modifier 0.937 0.967 0.952

FamilyMemberHistory.relationship 0.756 0.739 0.747

Abbreviations: FHIR: Fast Healthcare Interoperability Resources; NLP: natural language processing.
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utilization, and rapid generation of computational data for advanc-

ing clinical and translational research. We are actively working on

improving the performance of the NLP2FHIR pipeline, developing

new pipeline profiles with more FHIR clinical resource support, and

applying the pipeline for EHR-driven cohort identification and data

analytics. To accelerate community collaboration and tooling vali-

dation, the source code of our tooling and related resources are pub-

licly available at the GitHub site: https://github.com/BD2KOnFHIR/

NLP2FHIR.
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